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SUMMARY 

The use of on-animal sensor data enables continuous monitoring, providing valuable behavioural 
observations with the potential to be used for assessing an individual’s health and productivity. This 
study aimed to estimate the genetic parameters of sheep general activity, measured as vector 
magnitude, which represents the overall magnitude of the movement to provide an objective activity 
level measurement. Activity records of 1,149 Merino ewes were collected with ActiGraph™ 
wGT3X-BT® devices over a period of 17 days (after editing 10 non-continuous days used in the 
analysis). Single trait estimates (STE) were initially considered for this analysis; however, random 
regression (RR) was also checked, given the patterns observed on raw records over time and days. 
The STE of heritability (h2) and repeatability (Rep) in the whole dataset were 0.19 ± 0.06 and 0.56 
± 0.08, respectively. Across 10 days, single estimates of h2 ranged from 0.15 ± 0.06 to 0.25 ± 0.08 
and Rep from 0.45 ± 0.08 to 0.66 ± 0.08, while RR models resulted in lower h2 (0.11 to 0.23) and 
Rep (0.22 to 0.34) over these days. Genetic correlations between days (up to day 16) and times (2 
hours) were high, which did not indicate the potential of random effects of time and day in genetic 
parameters for sheep activity. These estimated parameters can be considered for future welfare-
related breeding programs, and the amount of repeatability can guide the development of an effective 
measurement protocol. 

 
INTRODUCTION 

Recent research emphasises using sensor technologies to monitor animal better and measure the 
animals’ behaviour, health, and production traits in commercial systems (Almasi et al. 2023; Brito 
et al. 2020). Accelerometer data can be used to classify behaviours (Wang et al. 2023) or quantified 
as activity levels (Marchesini et al. 2018; Hu et al. 2024). These novel traits may be heritable and, 
once validated, could be incorporated into breeding programs by providing more detailed and 
consistent information which enables superior genetic comparisons over time (Morris et al. 2012) 
or establishing correlations between behavioural and health traits and improve animal behaviour and 
welfare. Therefore, this study aimed to estimate the genetic parameters of sheep activity, measured 
as vector magnitude count (VMC) using linear, repeated measurement and random regression 
models.  
 
MATERIALS AND METHODS 

In this study, the activity data of two contemporary groups of Merino ewes born in 2017 (n=607, 
recorded in Dec 2022 - Jan 2023) and 2018 (n =542, recorded in Dec 2023 - Jan 2024) were used. 
The sheep were F1 ewes from the New England Merino Lifetime Productivity flock (MLP), 
managed by CSIRO at the FD McMaster Laboratory, Chiswick, Uralla, NSW, Australia (Ramsay et 
al. 2019). All experimental procedures conducted on animals were approved by the CSIRO 
Armidale Animal Ethics Committee (Animal Research Authority no. 21/24 and 22/20). 

 
* A joint venture of NSW Department of Primary Industries and Regional Development and the University of 
New England 
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ActiGraph™ wGT3X-BT® devices (Actigraph LLC, Pensacola, FL, USA) were used to collect 
sheep activity data continuously at 30 Hz. In its default setting, the 3-axis accelerometer within the 
device measures accelerations for each axis (X, Y, Z) in G value, estimating VMC as:  

VMC=  �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎x2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎y2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎z2. 
For each experiment, the complete data was available for 17 days. On day one, devices were 

attached to each sheep’s neck using a collar. Raw data was downloaded using ActiLife software, 
which filtered noise and provided summary outputs as hourly epochs. Outliers and VMC less than 
100 were removed from the dataset using a histogram or boxplots for values outside the limit at each 
timepoint and overall. The days when the animal moved between paddocks or through yards were 
excluded. To ensure data consistency and reduce number of analyses, only days with records from 
both deployments (in total 10 non-consecutive days) were used for further analysis. From 24-hour 
records, 4 one-hour time blocks in the afternoon between 1500 and 1900 h were selected for analysis, 
based on inter-animal variability during this period, combined with an absence of disruptive events 
such as moving animals between paddocks (in total times=4, day=10, and daytime=40 records per 
animal). Variations in activity between animals and over time were expected. However, 
heterogeneity across contemporary groups was addressed with the method described by Brown et 
al. (2005). In total, 45,641 records from 824 fully pedigreed ewes, representing 28 sires were used. 

Statistical analysis. A univariate animal model for repeated measures was fitted using ASReml 
(Gilmour et al. 2009) to estimate heritability (h2) and repeatability (Rep) of activity across the dataset 
(single estimates using repeated measurement model (RMM)) and intervals for each time (n=4), day 
(n=10), and daytime (n=40; although there was not any evidence of autocorrelation in this study, it 
might be a limitation) to assess the necessity of running RR. Given the unknown pattern of this trait 
across time, day, and daytime, an RR model with polynomial orders (1 to 6) was also applied to 
activity across day, time and the interaction of day and time. Models were compared using the 
likelihood ratio test (LRT), Akaike Information Criterion (AIC), and Bayesian Information Criterion 
(BIC).  

Fixed effects included contemporary groups while day, time, and day-time interaction were fitted 
separately as repeated measurements. Bodyweight (kg) at 4yo, rainfall (mm), temperature humidity 
index, wind speed (km/h), and solar radiation (W/m^2) were considered as covariates when time 
and/or day were fitted as repeated measurements in the model. Random effects comprised genetic 
and permanent environment effects, with genetic group effects assessed. The covariance function 
was estimated in RR models using Ĝ = ФKФ`, where Ĝ is the genetic covariance matrix for breeding 
values, Ф is the matrix of orthogonal polynomials, and K is the genetic variance coefficients matrix. 
 
RESULTS AND DISCUSSION 

The results showed all covariates and fixed factors were significant (P < 0.001) except rainfall 
information. Animal weight and weather conditions significantly influenced animal activity. Genetic 
groups (assigned by Sheep Genetics) had no significant effect and were excluded.  

A single estimate of h2 and Rep was obtained by fitting daytime as a repeated measure, with h2 
at 0.19 ± 0.06 and Rep at 0.56 ± 0.08 for all days and times in the dataset. Heritability and Rep 
values varied (with a pattern) across different times (Figure 1a), days (Figure 1d), and daytimes 
(Figure 1g; Rep estimates were not computed as they were not repeated) ranging from low to 
moderate.  

Polynomial regression was fitted to the fixed effect of time, day and daytime to find the best 
order in the raw records. The best fit for the records was achieved by using regression models with 
polynomial orders of 2 for time and 6 for day (Figure 1c, and f, respectively), resulting in R² values 
close to 1 (Figures 1b and e, respectively). Fitting RR with an order of six for daytime (Figure 1i) in 
raw records showed lower performance (R² = 0.29; Figure 1h). RR models had lower AIC and BIC 
values than RMMs, indicating a better fit despite having lower parameter estimates. They also 
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aligned with the raw data pattern. To our knowledge, no study has applied RR models to actual time 
series data, as previous studies have relied on standardised records based on group means (e.g., time, 
day). 
 

 
Figure 1. Plot showing parameter estimates (heritability-(h2) and repeatability (Rep)) and data 
distribution across different times (a-c), days (d-f), and daytimes (g-i) obtained using various 
animal models. Note: Models included single estimates at intervals (time, day and daytime), linear random 
regression (first-order), Polynomial (poly) and Legendre (legendr) with a second order for the time, a sixth 
order for day and daytime. 

 
Table 1. Genetic correlations across days (upper), and time points (lower diagonal) modelled 
using sixth-order and second-order polynomials, respectively 
.  

Day 3 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 16 Day 17 Days 
0.90  0.86  0.84  0.82  0.83 0.86 0.88 0.83  0.54  Day 2 
 0.91  0.89 0.90 0.91 0.93  0.91  0.79  0.37  Day 3 
  0.99  0.97  0.96  0.95  0.91  0.78  0.34  Day 6 
   0.99 0.98 0.96 0.89  0.75  0.26  Day 7 
    0.99 0.97  0.90  0.74  0.22  Day 8 
5 PM 6 PM 7 PM Times  0.99 0.92  0.76  0.25 Day 9 
0.90  0.84 0.74  4 PM   0.97  0.81  0.37  Day 10 
 0.97  0.73  5 PM    0.87  0.56  Day 11 
  0.86  6 PM     0.68  Day 16 

* Standard errors ranged from 0.03 to 0.04 for genetic correlations estimated between different times and 
from 0.02 to 0.04 between different days. 

 
High genetic correlations (rg) were found between times, and days, except for day 17, which had 

lower correlations with all other days (0.22–0.68; Table 1). There were also moderate to high rg 
between different daytimes except for 78 daytime combinations with rg lower than 0.6 (not shown). 
Almasi et al. (2023) also represented that there was a low intraclass correlation between 
measurements longer than one week. Overall, the result of this study indicate that there was no 
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marginal difference in rg across studied times and days. Therefore, considering the measurements 
across a broader range of time points and days might provide a more accurate view of actual h2 and 
Rep estimated via the RR model compared to a single estimation of RMMs. 

Previous studies on sheep activity have shown traits such as Daily Distance Travelled have 
moderate h2 (0.36 ± 0.09) and Rep (0.51 ± 0.03) (Johnson et al. 2021). Almasi et al. (2023) reported 
that accelerometer-derived traits, such as grazing time, show moderate to high h2 (0.44 ± 0.23) and 
Rep (0.70 ± 0.03) that can be useful for ranking animals for feeding activities in selective breeding 
programs (Almasi et al. 2023). Similarly, grazing behaviour traits in semi-extensively reared 
Boutsko sheep demonstrate significant h2 and Rep for grazing and speed but low non-significant h2 

for distance (0.05 ± 0.06) (Vouraki et al. 2025). These findings highlight the value of wearable 
sensors for advancing genetic selection in sheep by providing continuous data that enables the 
development of traits for improved health and production. 

 
CONCLUSION 

This study showed moderate heritability and repeatability estimates for sheep activity, 
suggesting the potential of this novel trait for selection that may offer favourable correlated 
responses for health and production. Further work is required to determine the relationships between 
activity and health status, and between activity and economically important production traits. 
Although a weak pattern was observed in the results when considering RR models, our findings 
suggest that RMMs suffice for accurately estimating the genetic parameters in this dataset.  
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